Pemodelan Hubungan Tinggi dan Diameter Eucalyptus pellita Umur 30 Bulan
DOI:
https://doi.org/10.55180/jwt.v13i1.596Kata Kunci:
height-diameter model, height prediction, , regression line similarity testingAbstrak
Inventory on Plantation Monitoring Assessment (PMA) Eucalyptus pellita at the aged of 30 months, measuring total height (h) and diameter at breast height (dbh). Height measurements were done using the Vertex. Measuring the total height of a tree whose crown has started to close (overlap) requires more time to find the highest point of the tree, it is necessary to overcome it with a tool that is a height estimator model through the relationship between height and diameter at breast height (h-dbh). The study was conducted using two compartments of Eucalyptus pellita stands at the aged of 30 months. Sampling conducted by Systematic Sampling with Random Start. The data measured were total height (h) and diameter at breast height (dbh). Simple linear regression modeling h-dbh compiled for each compartment then carried out a goodness of fit test and validation using the Bias, SA and SR values, after that the regression line similarity was tested. The results showed that the two compartments have regression equations with the same slope and intercept, so that the two compartments can be threated as one dataset and the total height in the two compartments studied can be estimated using the equation h = 6,968 + 0,844 dbh.
Referensi
Bravo, F., Fabrika, M., Ammer, C., Barreiro, S., Bielak, K., Coll, L., Fonseca, T., Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., Schuler, L., Peric, S., Rötzer, T., Del Río, M., Dodan, M., & Bravo-Oviedo, A. (2019). Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities. Forest Systems, 28(1), 1–18. https://doi.org/10.5424/fs/2019281-14342
Ciceu, A., Garcia-Duro, J., Seceleanu, I., & Badea, O. (2020). A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands. Forest Ecology and Management, 477(August), 118507.
https://doi.org/10.1016/j.foreco.2020.118507
Colbert, K. C., Larsen, D. R., & Lootens, J. R. (2002). Height-diameter equations for thirteen midwestern bottomland hardwood species. Northern Journal of Applied Forestry, 19(4), 171–176. https://doi.org/10.1093/njaf/19.4.171
Ferraz Filho, A. C., Mola-Yudego, B., Ribeiro, A., Scolforo, J. R. S., Loos, R. A., & Scolforo, H. F. (2018). Height-diameter models for eucalyptus sp. plantations in Brazil. Cerne, 24(1), 9–17. https://doi.org/10.1590/01047760201824012466
Giyanto. (2003). Membandingkan Dua Persamaan Regresi Linear Sederhana. Oseana, XXVIII(1), 19–31.
Gómez-García, E., Diéguez-Aranda, U., Castedo-Dorado, F., & Crecente-Campo, F. (2014). A comparison of model forms for the development of height-diameter relationships in even-aged stands. Forest Science, 60(3), 560–568. https://doi.org/10.5849/forsci.12-099
Jabnabillah, F., & Margina, N. (2022). Analisis Korelasi Pearson Dalam Menentukan Hubungan Antara Motivasi Belajar Dengan Kemandirian Belajar Pada Pembelajaran Daring. Jurnal Sintak, 1(1), 14–18. https://journal.iteba.ac.id/index.php/jurnalsintak/article/view/23%0Ahttps://journal.iteba.ac.id/index.php/jurnalsintak/article/download/23/23
Li, Y. Q., Deng, X. W., Huang, Z. H., Xiang, W. H., Yan, W. De, Lei, P. F., Zhou, X. L., & Peng, C. H. (2015). Development and evaluation of models for the relationship between tree height and diameter at breast height for Chinese-fir plantations in subtropical China. PLOS ONE, 10(4), 1–21. https://doi.org/10.1371/journal.pone.0125118
Mehtätalo, L., de-Miguel, S., & Gregoire, T. G. (2015). Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45(7), 826–837. https://doi.org/10.1139/cjfr-2015-0054
Mensah, S., Pienaar, O. L., Kunneke, A., du Toit, B., Seydack, A., Uhl, E., Pretzsch, H., & Seifert, T. (2018). Height – Diameter allometry in South Africa’s indigenous high forests: Assessing generic models performance and function forms. Forest Ecology and Management, 410(December 2017), 1–11. https://doi.org/10.1016/j.foreco.2017.12.030
Özçelik, R., Cao, Q. V, Trincado, G., & Göçer, N. (2018). Forest Ecology and Management Predicting tree height from tree diameter and dominant height using mixed- e ff ects and quantile regression models for two species in Turkey. Forest Ecology and Management, 419–420(March), 240–248. https://doi.org/10.1016/j.foreco.2018.03.051
Sahuri, S. (2017). Model Pendugaan Volume Pohon Karet Saat Peremajaan Di Sembawa, Sumatera Selatan. Jurnal Penelitian Hutan Tanaman, 14(2), 141–155. https://doi.org/10.20886/jpht.2017.14.2.141-155
Siarudin, M., & Indrajaya, Y. (2014). Persamaan allometrik jabon (Neolamarckia cadamba Miq) untuk pendugaan biomassa di atas tanah pada Hutan Rakyat Kecamatan Pakenjeng Kabupaten Garut. Jurnal Penelitian Hutan Tanaman, 11(1), 1-9
Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026
Sunardi, N. (2009). Pengantar Statistika. Bumi Aksara.
Vastaranta, M., Latorre, E. G., Luoma, V., Saarinen, N., Holopainen, M., & Hyyppä, J. (2015). Evaluation of a smartphone app for forest sample plot measurements. Forests, 6(4). https://doi.org/10.3390/f6041179
Yusandi, S., & Jaya, I. N. S. (2016). The estimation model of mangrove forest biomass using a medium resolution satellite imagery in the concession area of forest consession company in West Kalimantan. Bonorowo Wetlands, 6(2), 69–81. https://doi.org/10.13057/bonorowo/w060201