Pengaruh Dosis Mikoriza dan Komposisi Media Tanam terhadap Pertumbuhan Bibit Kelapa Sawit di Pre Nursery
DOI:
https://doi.org/10.55180/agi.v7i1.580Keywords:
Oil Palm, Mycorrizal Biofertilizer, Husk Charcoal, Top Soil, Pre NurseryAbstract
The development of oil palm plantations begins with the procurement of quality seeds. This effort is carried out through the use of mycorrhizal fungi as biological fertilizers and and improvement of seedling planting media. This study aims to determine the effect of mycorrhiza dose with the mixed composition of rice husk charcoal and top soil on the growth of oil palm seedlings in the pre-nursery. This research was a factorial experiment arranged in a completely randomized design. The composition of the planting medium consists of four levels: top soil, 25% husk charcoal with 75% humus, 50% husk charcoal plus 50% top soil, and 100% husk charcoal solely. The dose of mycorrhizal biofertilizer consists of three levels, namely: 0.5 and 10 grams per seed. The results of this study indicated that the composition of the media or the application of mycorrhizal biofertilizers had no significant effect on the growth of oil palm seedlings in prenursery. The largest seedling leaf area was produced by seedlings planted on media containing husk charcoal which was given 10 grams of mycorrhizal biofertilizer.
References
Aerts, R. (2003). The Role of Various Types of Mycorrhizal Fungi in Nutrient Cycling and Plant Competition. In Mycorrhizal Ecology (pp. 117–133). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_5
Harahap, A. F., Rahmawati, N., & Sipayung, R. (2015). Pengaruh Pemberian Mikoriza dan Komposisi Media Tanam pada Pembibitan Kelapa Sawit di Prenursery. Jurnal Online Agroteknologi, 3(1), 1–10.
Jacott, C., Murray, J., & Ridout, C. (2017). Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. Agronomy, 7(4), 75. https://doi.org/10.3390/agronomy7040075
Jakobsen, I., & Hammer, E. (2015). Nutrient Dynamics in Arbuscular Mycorrhizal Networks (pp. 91–131). Springer. https://doi.org/10.1007/978-94-017-7395-9_4
Johnson, N. C., Miller, R. M., & Wilson, G. W. T. (2017). Mycorrhizal Interactions With Climate, Soil Parent Material, and Topography. In Mycorrhizal Mediation of Soil (pp. 47–66). Elsevier. https://doi.org/10.1016/B978-0-12-804312-7.00004-8
Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. In P. Marschner (Ed.), Mineral Nutrition of Higher Plants (Third Edition) (p. ix). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00026-1
Murphy, B. (2015). Key soil functional properties affected by soil organic matter—Evidence from published literature. IOP Conference Series: Earth and Environmental Science, 25, 012008. https://doi.org/10.1088/1755-1315/25/1/012008
Niinemets, Ü. (2016). Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. In K. Hikosaka, Ü. Niinemets, & N. P. R. Anten (Eds.), Canopy Photosynthesis: From Basics to Applications (pp. 101–141). Springer Netherlands. https://doi.org/10.1007/978-94-017-7291-4_4
Rahmatika, A., Hasan, M. Z., Bachtiar, S. B., & Hasanah, L. R. (2018). Pemanfaatan sekam bakar dan serabut kelapa sebagai media tanam bayam merah (Amaranthus gangeticus) dengan perbedaan intensitas penyiraman air teh. Prosiding Seminar Nasional Pendidikan Biologi, 0, Article 0. http://research-report.umm.ac.id/index.php/psnpb/article/view/2544
Rai, A., Rai, S., & Rakshit, A. (2022). Mycorrhiza-mediated phosphorus use efficiency in plants. Environmental and Experimental Biology, 11, 107–117.
Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis (3rd ed.). Academic Press. https://shop.elsevier.com/books/mycorrhizal-symbiosis/smith/978-0-12-370526-6
van der Heijden, M. G. A., & Sanders, I. R. (2003). Mycorrhizal Ecology: Synthesis and Perspectives | SpringerLink (Vol. 157). https://link.springer.com/chapter/10.1007/978-3-540-38364-2_17